2024年7月2日,復旦大學(xué)類(lèi)腦智能科學(xué)與技術(shù)研究院馮建峰教授/程煒研究員團隊(博士后張蓓為第一作者)在 Nature 子刊 Nature Human Behaviour 上發(fā)表了題為:Identifying behaviour-related and physiological risk factors for suicide attempts in the UK Biobank 的研究論文。該研究基于英國生物樣本庫(UK Biobank)30多萬(wàn)人的行為學(xué)、神經(jīng)影像組學(xué)、血液和代謝組學(xué)及蛋白組學(xué)數據,通過(guò)多組學(xué)關(guān)聯(lián)分析,全面評估與自殺行為關(guān)聯(lián)的多維度風(fēng)險因素,最終識別出與自殺行為及其遺傳易感性顯著(zhù)關(guān)聯(lián)的246個(gè)行為學(xué)風(fēng)險因素和200個(gè)生物學(xué)風(fēng)險因素,如社會(huì )經(jīng)濟環(huán)境、生活方式、身心健康、童年經(jīng)歷和腦灰質(zhì)體積等。在此基礎上,研究團隊開(kāi)發(fā)了一種基于行為學(xué)特征的機器學(xué)習判別模型,在區分有無(wú)自殺行為上表現出高判別力(AUC=0.909)。該研究對自殺行為的多維度風(fēng)險因素識別提供了全面的見(jiàn)解,有助于自殺行為的早期預警和個(gè)性化干預。研究團隊基于UK Biobank數據,首先估算了334706名參與者的自殺行為的多基因風(fēng)險評分(polygenic risk scores,PRS),對涵蓋12個(gè)不同類(lèi)別的行為學(xué)和生物學(xué)因素(2291個(gè))進(jìn)行全表型關(guān)聯(lián)分析(phenome-wide association study,PheWAS),最終識別了與自殺行為遺傳易感性顯著(zhù)關(guān)聯(lián)的246個(gè)行為學(xué)風(fēng)險因素(63.07%)和200個(gè)生物學(xué)風(fēng)險因素(10.41%)。
論文共同通訊作者,復旦大學(xué)類(lèi)腦智能科學(xué)與技術(shù)研究院馮建峰教授表示,這項研究開(kāi)發(fā)了一個(gè)基于行為學(xué)特征的機器學(xué)習模型。排名前16位的預測因子在區分有無(wú)自殺行為的個(gè)體方面表現出很高的辨別準確性。這可能有助于識別未來(lái)識別自殺高危人群。除了精神痛苦以及抑郁癥相關(guān)的預測因子外,主要的行為學(xué)預測因子是個(gè)體的童年經(jīng)歷和性侵犯受害者。這些因素為臨床醫生制定更好的預防策略提供了潛在的可操作目標。劍橋大學(xué) Barbara Sahakian 教授評論道:自殺不僅是一種悲慘的生命損失,同時(shí)也會(huì )給家人和朋友帶來(lái)巨大的打擊。這項研究確定了自殺行為的關(guān)鍵風(fēng)險因素,讓我們更加了解如何識別易受影響的個(gè)體并進(jìn)行干預以挽救生命。